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Abstract: Statistical distribution for describing the wind speed at a particular location provides information 
about the wind energy potential. In this paper, nine different statistical distributions are fitted to the data of 
average hourly wind speed for 60 wind stations across the west and east Malaysia from the year 2000 to 2009. 
The distributions found to be most adequate for describing the wind speed at each particular station are 
determined based on several goodness of fits criteria. The spatial dependence in the data is investigated by 
making use of the semivariogram involving the expected speed found using the identified distribution for each 
individual station. Since the spatial dependence in the data of Peninsular Malaysia could not be described well 
by the semivariogram, the inverse distance weighting method is used for describing the spatial distribution of 
wind speed. For the data of East Malaysia, however, the power semivariogram is found to be fitted quite well. 
Accordingly, the kriging method is applied for spatial prediction. It is found that, the regions in the northeast, 
northwest and southeast of the peninsula have a good potential for wind energy. For East Malaysia, the 
northeast and southwest regions of Sarawak are found to be the most potential. 
 
Key-Words:  Wind energy, wind speed distribution, semivariogram, spatial estimation, kriging, inverse distance 
weighting method 
 
 
1 Introduction 
Various studies on wind speed have been carried out 
by many researchers, particularly for the purpose of 
generating energy [1,2,3]. The growing interest in 
wind as a possible source of energy for producing 
electricity nowadays is dated to the oil crisis that 
occurred in the mid-seventies [4]. Wind energy has 
become an important alternative renewable source 
of energy because it is clean and cost effective for 
many applications such as electric power production, 
water pumping, etc. Utilization of wind as an energy 
resource has been growing rapidly in the whole 
world since the consumption of other energy 
resources such as fuel, nuclear and coal contributes 
to environmental pollution and global warming. 
Moreover, wind energy does not impose 
transportation problem and does not require 
utilization of high technology [5].  
     In 2009, wind turbines built around the world are 
found to be generating electricity at a rate of 
340TWh per year. This capacity is equivalent to 2% 

of worldwide electricity usage. Asia became the 
world’s wind locomotive in the year 2009, mainly 
due to the two large markets of China and India. 
The wind capacity installed in Asia has reached the 
total amount of 40.0 GW. In Malaysia, it is 
suggested that the potential for wind energy 
generation depends on the availability of the wind 
resource which is found to vary according to 
location [4]. Since wind power is seen as a potential 
alternative energy resource, more in depth studies 
have to be carried out in Malaysia in order to 
explore this oppurtunity [5-7]. 
      Among the early works on wind energy research 
in Malaysia is the work by Sopian et al. [7]. They 
have analyzed 10 wind stations in Malaysia using 
Weibull distribution. Their results indicate that 
Mersing and Kuala Terengganu possess the best 
potential for wind energy development. It has been 
described by Ong et al. [4], 150 kW wind turbine 
which was built in Terumbu Layang-Layang in 
2005 had demonstrated some success. Recently, 
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Tenaga Nasional Berhad (TNB), which is the only 
electricity supplier in Malaysia, had built two units 
of wind turbine at Pulau Perhentian. Also, the 
Ministry of Rural and Regional Development had 
built 8 small units of wind turbine in Sabah and 
Sarawak for local communities [8].  
       Since wind speed vary according to sites, it is 
reasonable to consider that there exist a spatial 
dependence between the locations. Observations in 
close spatial proximity are expected to be more 
similar than observations that are more spatially 
separated [8]. In general, the greater the distance, 
the more is the regional independent and vice versa 
for the smaller distance [9]. In this study, we 
identify the distribution of wind speed for various 
stations and apply the geostatistical interpolator 
such as kriging and inverse distance weighting 
method in order to gain some insight on the wind 
regime in Malaysia.  
    Among methods that are commonly used for 
spatial mapping are geostatistical interpolator such 
as kriging and inverse distance weighting method. 
Cellura et al. [10], for example, use inverse distance 
weighting and universal kriging methods for spatial 
prediction of wind speed in Sicily. They found that 
their wind speed map are quite similar to the Italian 
Wind Atlas. The application of kriging method for 
spatial prediction can also be found in various areas 
of research such as rainfall analysis, health sciences, 
thermal sciences, etc. This paper provides a rough 
map of wind speed to identify which region in 
Malaysia has the potential of generating wind 
energy before a more in depth analysis is carried at 
the specific area. 
 
2 Study area, regional climate and 
data 
     Malaysia is a country which lies entirely in the 
equatorial zone, situated in the south east part of 
Asia, having a geographic coordinate of 2° 30' in the 
north latitude and 112° 30' in the east longitude. 
Throughout the year, Malaysia experiences a wet 
and humid condition with daily temperature ranging 
from 25.5to35 C° . The wind that blows across the 
peninsula as well as Sabah and Sarawak is 
influenced by the monsoon seasons, namely 
southwest monsoon, northeast monsoon and two 
short inter-monsoons. The two monsoons that 
contribute to rainy seasons are the southwest 
monsoon, occurring in May until September, and 
the northeast monsoon which occurs from 
November until March. The later monsoon brings 
about heavier rainfall in the peninsula, with the 

worst affected areas are in the east and south. 
Malaysia is a maritime country which is also 
influenced by the effect of sea breezes and land 
breezes especially when the sky is not cloudy. 
During the afternoon, sea breezes with the speed of 
between 10 to 15 knots usually occur. Meanwhile, at 
night, the land breezes occur. The data used in this 
study which consists of hourly wind speed (km/hour) 
from January 2000 to November 2009 for 50 wind 
stations across the country were obtained from the 
Department of Environment.  
 
3 Wind speed probability distribution 

In order to describe the behaviour of wind speed 
at a particular location, it is necessary to identify the 
distribution which best fits the data. Suitable 
distributions for each wind station has been 
determined by fitting nine types of statistical 
distribution to the data, namely Weibull (WE), Burr 
(BR), Gamma (GA), Inverse Gamma (IGA), Inverse 
Gaussian (IGU), Exponential (EX), Rayleigh (RY), 
Lognormal (LN) and Erlang (ER) to the data. Here, 
ER is just a special case of Gamma distribution 
where the shape parameter is an integer. In this 
study, parameter estimation for each model is done 
by using maximum likelihood method. Table 1 
below shows the list of probability density functions 
with their respective mean and maximum likelihood 
estimator, for details see [11-14]. The maximum 
likelihood estimator (MLE) for the parameters of 
WE, GA, IGU, ER, IGA, BR distributions can be 
determined numerically by using methods such as 
Newton-Rapson, scoring, EM algorithm, quasi-
Newton, Nelder-Mead method etc. In this study, 
Nelder-Mead method was used as an optimization 
technique for determining the MLE of the 
parameters [15]. For other distribution such as LN, 
RY, and EX the MLEs can be easily determined. 
Table 2 and Table 3 show the parameter estimates 
found for each distribution. Several goodness of fit 
tests which include Kolmogorov-Smirnov (KS), 
Akaike’s Information Criterion (AIC) and Bayesian 
Information Criterion (BIC) are used to determine 
the most suitable statistical distribution for the data 
of each wind station. In addition, R2 coefficient was 
also used to evaluate the goodness of fit for each 
method. A large value of R2 indicates a better fitted 
theoretical distribution to the data. 
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Table 1. List of probability density functions and maximum likelihood estimators 
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Table 4 provide the result on the goodness of fit 
statistics, the associated value of R2 and the selected 
distribution to describe the data for each station. 
Based on the results for all the distributions and 
with respect to all goodness of fit methods, all R2 
value are found to be grater than 0.97, indicating 
that these distributions fit the data well. However, 
for the purpose of selection of the ‘best’ distribution, 
we use the criteria of largest value of R2. Weibull, 
Gamma, Erlang, Burr and Inverse Gamma are 
distributions that are found to be the most suitable 
for explaining the hourly mean speed in Malaysia. 
The most frequent distribution selected will be 
based on the highest number of stations that have 

been successfully fitted using the particular 
distribution. Based on results shown in Table 4, GA 
provides the best fit to wind speed observed at 22 
stations, indicating that it is the most frequent 
selected distribution. The second most frequent 
selected distribution is BR. Thirteen station was 
successfully fitted with BR distribution. IGA are the 
third most frequent selected distribution, as shown 
by 5 stations. This followed by WE and ER which 
are found to fit adequately the data observed at 4 
and 3 stations respectively. However, LN, EX, RY 
and IGU fail to fit well the distribution of wind 
speed at all stations. 
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Table 2.  The parameter estimates for Lognormal, Weibull Rayleigh, Exponent, Gamma 

and Inverse Gaussian based on maximum likelihood method. 
Station Parameter Estimates 

 
 

Lognormal Weibull Rayleigh Exponential Gamma Inverse 
Gaussian 

 µ σ α β Θ Θ α β µ λ 
           
1 1.565 0.460 6.611 1.723 4.863 5.871 2.589 2.268 5.871 3.720 
2 1.360 0.419 5.395 1.557 4.066 4.798 2.555 1.880 4.798 3.138 
3 1.771 0.302 7.647 2.027 5.391 6.755 3.756 1.799 6.755 4.966 
4 1.415 0.567 5.902 1.582 4.463 5.282 2.162 2.445 5.281 3.060 
5 0.865 0.477 3.377 1.490 2.650 3.205 2.232 1.355 3.025 1.909 
6 1.330 0.565 5.612 1.526 4.174 4.879 2.117 2.304 4.789 2.833 
7 1.049 0.457 3.991 1.656 2.982 3.545 2.465 1.439 3.545 2.280 
8 1.779 0.442 7.933 2.036 5.546 6.930 3.357 2.066 6.931 3.481 
9 1.487 0.432 6.124 1.634 4.666 5.444 2.565 2.119 5.444 3.560 
10 1.695 0.370 7.308 1.847 5.336 6.462 3.086 2.092 6.463 4.469 
11 1.491 0.329 5.843 2.002 4.090 5.162 3.495 1.477 5.161 3.713 
12 1.664 0.374 7.126 1.802 5.200 6.302 2.984 2.112 6.302 4.351 
13 1.895 0.338 8.848 1.929 6.316 7.807 3.279 2.381 7.807 5.606 
14 1.170 0.371 4.316 1.882 3.087 3.816 3.111 1.227 3.816 2.638 
15 1.448 0.439 5.874 1.676 4.371 5.217 2.601 2.004 3.508 2.154 
16 1.016 0.508 3.905 1.546 2.994 3.508 2.241 1.565 3.491 2.142 
17 1.383 0.346 5.311 1.886 3.811 4.691 3.235 1.451 4.691 3.330 
18 1.506 0.340 5.960 1.980 4.225 5.265 3.373 1.560 5.264 3.756 
19 1.472 0.504 6.124 1.619 4.609 5.461 2.368 2.307 5.461 3.315 
20 1.046 0.414 3.938 1.628 2.967 3.497 2.577 1.357 3.497 2.342 
21 1.328 0.773 5.774 1.350 4.652 5.283 1.632 3.236 5.283 2.574 
22 1.347 0.646 5.711 1.362 4.673 5.197 1.808 2.875 5.197 2.797 
23 1.374 0.281 5.089 2.106 3.559 4.497 4.021 1.119 4.497 3.389 
24 1.288 0.708 5.455 1.378 4.379 4.967 1.737 2.857 4.966 2.544 
25 1.602 0.524 6.926 1.750 5.060 6.165 2.460 2.506 6.165 3.656 
26 1.351 0.441 5.236 1.895 3.748 4.644 2.869 1.618 1.351 0.441 
27 1.572 0.336 6.366 1.954 4.526 5.622 3.388 1.658 5.622 4.022 
28 1.150 0.646 4.660 1.466 3.628 4.206 1.899 2.215 4.206 2.285 
29 1.449 0.553 6.094 1.553 4.655 5.457 2.169 2.519 5.457 3.195 
30 1.698 0.651 8.135 1.513 6.187 7.185 2 3.636 7.186 3.803 
31 1.482 0.381 5.916 1.874 4.250 5.232 3.055 1.712 5.232 3.583 
32 1.152 0.374 4.260 1.837 3.078 3.767 3.027 1.245 3.767 2.611 
33 1.078 0.276 3.798 2.053 2.670 3.353 3.946 1.066 3.353 2.551 
34 1.464 0.353 5.776 1.883 4.145 5.102 3 1.605 5.102 3.599 
35 1.522 0.431 6.193 1.895 4.434 5.490 3 1.883 5.490 3.549 
36 1.586 0.468 6.714 1.781 4.887 5.962 2.663 2.237 3.962 3.727 
37 1.336 0.394 5.218 1.637 3.931 4.631 2.694 1.099 4.631 3.144 
38 1.360 0.780 5.944 1.386 4.714 5.421 1.662 3.262 5.421 2.625 
39 1.687 0.283 6.998 2.088 4.902 6.174 3.906 1.580 6.174 4.661 
40 1.581 0.460 6.675 1.795 4.848 5.924 2.682 2.207 5.924 3.745 
41 1.321 0.328 4.976 1.866 3.582 4.392 3.299 1.079 4.392 3.174 
42 1.598 0.316 6.399 2.210 4.440 5.663 3.835 1.477 5.663 4.114 
43 1.440 0.384 5.746 1.738 4.226 5.086 2.843 1.789 5.086 3.492 
44 1.649 0.451 7.124 1.755 5.215 6.326 2.708 2.336 6.326 4.008 
45 1.354 0.350 5.199 1.784 3.795 4.596 3.082 1.490 4.596 3.252 
46 1.787 0.270 7.667 2.213 5.315 6.767 4.161 1.063 6.767 5.171 
47 1.385 0.460 5.537 1.714 4.079 4.917 2.559 1.923 4.917 3.139 
48 1.372 0.452 5.549 1.512 4.332 4.960 2.336 2.122 4.960 3.188 
49 1.148 0.534 4.524 1.514 3.498 4.055 2.137 1.897 4.055 2.433 
50 1.099 0.375 4.054 1.776 2.962 3.589 2.961 1.212 3.589 2.483 
51 2.208 0.255 11.59 2.193 8.005 10.143 4.376 2.339 10.237 7.885 
52 2.005 0.362 9.872 1.946 6.660 7.846 3.260 2.677 8.729 6.057 
53 1.796 0.423 8.226 1.746 5.843 6.838 2.764 2.640 7.296 4.788 
54 1.603 0.505 7.024 1.593 5.021 5.591 2 2.717 6.267 3.835 
55 1.802 0.334 7.993 1.933 5.629 6.891 3.145 0.483 7.064 5.051 
56 1.486 0.365 5.844 2.101 3.492 3.763 3.350 1.543 5.170 3.603 
57 1.648 0.499 7.361 1.554 5.466 6.177 2 2.890 6.577 4.042 
58 1.702 0.340 7.246 1.929 4.957 5.892 3.379 1.897 6.408 4.552 
59 1.818 0.547 8.763 1.613 6.189 6.926 2.239 3.496 7.827 4.596 
60 1.813 0.473 8.522 1.690 6.121 7.129 3 3.021 7.577 4.760 
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Table 3. The parameter estimates for Burr and Inverse Gamma distribution 

 based on maximum likelihood method 
St. 
 
 

Parameter Estimates  St. Parameter Estimates 
Burr Inverse Gamma   Burr Inverse Gamma 

 
q 

 
a 

 
b 

 
p 

 
β 

   
q 

 
a 

 
B 

 
P 

 
β 
 

1 11.357 1.809 24.397 2.145 7.976  31 5.892 2.059 13.12 2.581 9.249 
2 1.608 2.265 5.283 2.464 7.732  32 3.739 2.133 7.154 2.756 7.196 
3 2.136 2.667 8.798 3.120 15.491  33 2.495 2.630 4.751 3.692 9.419 
4 152.89 1.589 139.60 1.833 5.608  34 3.356 2.211 8.965 2.880 10.36 
5 0.797 2.624 2.019 2.427 4.633  35 99.73 1.906 69.03 2.115 7.504 
6 20.321 1.568 37.40 1.879 5.323  36 16.86 1.844 30.31 1.998 7.444 
7 3.878 1.913 7.282 2.443 5.648  37 0.917 2.813 3.585 2.780 8.738 
8 0.797 2.624 2.019 1.075 3.742  38 0.797 2.624 2.019 1.409 3.697 
9 1.660 2.249 6.130 2.455 8.738  39 2.823 2.545 9.403 3.548 16.54 

10 2.912 2.246 10.39 2.677 11.96  40 74.32 1.808 71.86 2.070 7.752 
11 4.041 2.308 9.831 2.942 10.92  41 1.349 2.732 4.406 3.175 10.07 
12 2.283 2.272 8.752 2.735 11.89  42 16.73 2.294 21.42 2.880 11.84 
13 7.026 2.081 21.40 3.078 17.25  43 1.533 2.400 5.461 2.793 9.753 
14 3.878 1.913 7.282 2.653 6.999  44 4.397 2.016 13.59 2.070 8.295 
15 2.365 1.764 7.434 2.335 7.895  45 1.365 2.631 4.613 3.013 9.800 
16 3.890 1.764 7.434 2.214 4.717  46 6.355 2.415 15.671 3.629 18.76 
17 1.660 2.249 6.130 2.930 9.759  47 46.86 1.734 50.439 2.227 6.988 
18 4.041 2.308 9.831 2.903 10.90  48 0.762 2.813 3.300 2.500 7.969 
19 4.505 1.837 12.63 1.980 6.564  49 5.409 1.671 11.386 2.084 5.073 
20 0.873 2.720 2.581 2.727 6.387  50 2.887 2.186 5.795 2.784 6.912 
21 218.43 1.354 307.9 1.451 3.735  51 2.823 2.545 9.403 3.669 28.931 
22 223.31 1.366 298.5 1.719 4.810  52 7.026 2.081 21.400 2.604 15.778 
23 2.283 2.272 8.752 3.413 11.56  53 20.32 1.568 37.404 2.331 11.161 
24 135.11 1.384 188.2 1.557 3.963  54 4.397 2.016 13.594 2.081 7.978 
25 213.32 1.763 1.462 1.832 6.839  55 6.356 2.423 15.669 2.904 14.668 
26 286.75 1.899 102.8 2.106 6.299  56 5.892 2.059 13.125 2.602 9.374 
27 2.283 2.272 8.752 2.931 11.78  57 6.355 2.415 15.671 2.140 8.650 
28 161.08 1.471 146.81 1.692 3.868  58 4.397 2.016 13.594 2.833 12.895 
29 164.33 1.559 160.05 1.900 6.038  59 7.026 2.081 21.400 1.857 8.536 
30 20.321 1.568 37.404 1.526 5.804  60 7.132 2.111 20.899 2.130 10.140 

 
Table 4. The result of goodness of fit tests found based on Kolmogorov Smirnov test, Akaike’s Information 

           Criterion, Bayesian Information Criterion and the selected distribution (in bold) for each station. 
 

St. Goodness-of-fit method St. Goodness-of-fit method 
 KS  R2 (%) AIC R2 (%) BIC R2 (%)   KS R2 (%) AIC R2 (%) BIC R2 (%) 

1 GA 99.70 GA 99.70 GA 99.70  31 GA 99.65 GA 99.65 GA 99.65 
2 BR 99.52 GA 98.98 GA 98.98  32 GA 99.62 GA 99.62 GA 99.62 
3 BR 99.60 GA 99.57 GA 99.57  33 BR 99.43 BR 99.43 BR 99.43 
4 BR 99.34 GA 99.20 GA 99.20  34 ER 99.09 GA 99.01 GA 99.01 
5 IGA 98.00 IGA 98.00 IGA 98.00  35 ER 99.38 WE 99.24 WE 99.24 
6 WE 99.34 GA 99.30 GA 99.30  36 BR 99.54 BR 99.54 BR 99.54 
7 GA 98.75 GA 98.75 GA 98.75  37 IGA 99.72 IGA 99.72 IGA 99.72 
8 WE 97.87 RY 98.07 WE 97.87  38 GA 96.97 WE 97.32 WE 97.32 
9 BR 99.34 GA 98.91 GA 98.91  39 GA 99.59 GA 99.59 GA 99.59 
10 GA 99.79 GA 99.79 GA 99.79  40 GA 99.84 WE 99.72 WE 99.72 
11 GA 99.76 GA 99.76 GA 99.76  41 IGA 99.61 IGA 99.61 IGA 99.61 
12 BR 99.21 GA 99.09 GA 99.09  42 WE 99.92 BR 99.94 BR 99.94 
13 GA 98.74 GA 98.74 GA 98.74  43 IGA 99.42 GA 99.38 GA 99.38 
14 GA 99.73 GA 99.73 GA 99.73  44 BR 99.67 GA 99.71 GA 99.71 
15 GA 99.18 GA 99.18 GA 99.18  45 BR 99.46 GA 98.85 GA 98.85 
16 BR 98.69 GA 98.31 GA 98.31  46 BR 99.25 BR 99.25 BR 99.25 
17 GA 99.63 GA 99.63 GA 99.63  47 GA 99.53 GA 99.53 GA 99.53 
18 GA 99.70 GA 99.70 GA 99.70  48 IGA 99.61 IGA 99.61 IGA 99.61 
19 GA 99.86 GA 99.86 GA 99.86  49 BR 98.44 GA 98.33 GA 98.33 
20 BR 98.12 IGA 98.52 IGA 98.52  50 GA 99.30 GA 99.30 GA 99.30 
21 WE 97.79 GA 97.70 GA 97.70  51 GA 98.66 GA 98.66 GA 98.66 
22 GA 99.16 GA 99.16 GA 99.16  52 WE 93.89 GA 94.93 GA 94.93 
23 WE 99.09 GA 99.90 GA 99.90  53 WE 96.58 GA 97.16 GA 97.16 
24 BR 98.77 GA 98.66 GA 98.66  54 ER 97.24 GA 92.46 GA 92.46 
25 WE 99.86 WE 99.86 WE 99.86  55 BR 98.33 WE 97.82 WE 97.82 
26 WE 99.53 BR 99.54 WE 99.53  56 RY 81.55 WE 73.11 WE 73.11 
27 GA 99.29 GA 99.29 GA 99.29  57 ER 98.99 GA 96.37 GA 96.37 
28 BR 98.36 GA 98.10 GA 98.10  58 RY 96.67 GA 96.04 GA 96.04 
29 GA 98.94 GA 98.94 GA 98.94  59 ER 96.26 GA 92.90 GA 92.90 
30 ER 99.66 WE 99.65 WE 99.65  60 GA 96.97 GA 96.97 GA 96.97 
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4 Semivariogram 
    Semivariogram is a tool which is often used to 
investigate spatial dependence of the data before 
spatial prediction is done. Let ( )iZ s denote the 
mean speed for the i-th station given a particular 
choice of the wind speed distribution. 
Semivariogram reconstruct the properties of auto-
covariance for the spatial process in d dimension 
denoted as{ }( ) : dZ ∈s s 

, where s  is the location 

at which attribute Z is observed. Semivariogram is 
defined as 
( ) ( ) ( )

( ) ( ) ( ) ( ){ } ( )

1
2
1 2 , 1
2

i j i j

i i i i

Var Z Z

Var Z Var Z Cov Z Z

γ  − = − 

= + −          

s s s s

s s s s

 

 
Semivariogram function that depends upon 
separation vector only through its length i j−s s  is 

called isotropic; if not, it is anisotropic. A valid 
semivariogram function can also be constructed 
from a valid covariance function, where a valid 
covariance function is a positive-definite function, 

such that ( )
1 1

0
k k

i j i i
i j

a a C
= =

− ≥∑∑ s s  for any set of 

real number 1, , ka a , where ( )i iC −s s  is a 
covariance function. Parametric forms that are 
available as candidates for semivariogram are linear, 
spherical, exponential, wave, rational quadratic, etc 
(see, Appendix). The candidate model is chosen 
based on the “closeness” between the theoretical 
semivariogram and the empirical semivariogram 
which is calculated by  

( ) ( ) ( ) ( ) ( )
2

( , ) ( )

1ˆ , 2
2

i j

i j
N

Z Z
N

γ
∈

 = − ∑
s s h

h s s
h

where i j= −h s s  is a distance between locations 

is and js  and ( )N h  denotes the set of pairs of 
locations at distance h .This measure of “closeness” 
may be based on mean square error. 
 
5  Kriging method 
   Kriging is a geostatistical technique used in spatial 
interpolation of geostatistical data. It has an ability 
of incorporating information about regional and 
local trends [7]. The general mathematical model for 
kriging is given by 
 

( ) ( ) ( )3µ= +Z s 1 e s

where ( ) ( ) ( ) ( ) '
1 2, , nZ s Z s Z s=   Z s  denote the 

mean of wind speed for each i-th station, where 
i=1,2,...n. µ  is unknown and assumed to be 

constant, ( ) ( )~ 0,∑e s , in which ∑  is the 
information about the spatial dependence of the data 
that needs to be specified from the semivariogram 
function. The predicted value of mean speed at the 
pivot point 0s , denoted as ( )0;kp sZ  can be 

expressed in term of a linear combination of ( )iZ s  
which is given by 
 

( ) ( ) ( )'
0 0; 4kp Z s Z sλ λ= +

 
 where 0λ  and the element of vector [ ]'1, nλ λ=λ 

 
are unknown coefficients. In order to get some 
reasonable estimates of ( )0Ẑ s , the unbiasedness 

constraint such that ( ) ( )0 0;E p E Z s=      Z s , or 

equivalently, ( ) ( )'
0 0E E Z sλ + =    λ Z s , which 

implies that ( )'
0 1 0λ µ+ − =λ 1 is required. Since 

this must hold for everyµ , it also holds for 0µ = . 
Thus, the unbiasedness constraint require that 

0 0λ =  and ' 1=λ 1 . From that point, we know that 

[ ]'1, nλ λ=λ 
 will be chosen based on minimizing  

 

( ) ( )( )2' '
0   1E Z s Z s subject toλ λ − =  

1
 

 
It can be accomplished by using Lagrange multiplier 
m where 
 

( ) ( )( ) ( )2' '
0arg min arg min 2 1Q E Z s Z s mλ λ = − − −  λλ 1

 
 
Expanding the above function by putting 
 
 ( ) ( )0 0Var Z s sγ=    

and ( ) = i js sγ Σ = Γ −    
 
yield a solution given by  
 

( ) ( )02 2 1Q s mγ= − + − −' ' 'λ Γλ λ λ 1
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where ( )i js sγ = − Γ  is the information about 

semivariogram of the data. Differentiation with 
respect to λ  and m , setting to zero and solving the 
simultaneous equation yields 
 

( ) ( ) ( )
'

0
0

1
5

s
s

γ
λ γ

 − Γ
= + Γ Γ 

' -1
' -1

' -1

1
1

1 1
 
and 
 

( ) ( )01
6

s
m

γ− Γ
= −

Γ

' -1

' -1

1
1 1

 
Thus, ( ) ( )0;kp Z s Z sλ= '  is the predictor of 
Kriging method with the variance of prediction is 

( )2
0k s mσ γ= +λ . However, if none of the 

semivariogram model is found suitable for 
modelling the empirical semivariogram, inverse 
distance weighting method is found to be more 
reasonable in estimation of random field instead  
(for detail see [8,17,18]) 
 
6 Inverse Distance Weighting Method 
(IDW) 
    IDW is an alternative method for spatial 
estimation of random field when the spatial 
dependence of the data could not be described well 
by the semivariogram. IDW is a weighted average 
interpolator which can either be an exact or a 
smoothing interpolator. In IDW, data is weighted 
during interpolation such that the influence of one 
point relative to another decline as the distance 
increased.  The value of ( )0;p sZ  at the pivot point 
so can be predicted by using a weighted mean of the 
available measurements through the expression 
 

( )
( ) ( )

( )
( )

0
1

0

0
1

,
; 7

,

n

i i
i

n

i
i

W s s Z s
p s

W s s

=

=

=
∑

∑
Z

 
where ( )iZ s is the observed data for station i,  

( )0,is s  is the distance between the station i to the 

pivot point so and ( )0,iW s s is the weighting factor 
which is decreasing as the distance increase. The 

value of ( )0;p sZ  decreases with the distance 
following a quadratic or exponential law [10]. 
 
7  Result and Discussion 
    After determining the distribution of wind speed 
for each station, the spatial interpolation is carried 
out on the mean value of each selected distribution. 
However, before determining the spatial distribution 
of wind speed, an assessment is made on the 
semivariogram of the data. Mean square error (MSE) 
is used to make an assessment on the suitability of 
the particular semivariogram model. Although MSE 
for the fitted model may indicate a minimum value, 
it does not necessarily imply that the fitted model 
will have a similar form as the theoretical model. 
Thus, in study we use our subjective assessment to 
select the best semivariogram model. The fitted 
semivariogram with relatively small MSE and found 
to satisfy the particular form of semivariogram will 
be chosen as the best fitted model. Based on Table 5 
which shows the value of MSE for fitted 
semivariogram model, it is found that Linear, Power 
and Wave semivariogram are chosen for modelling 
the spatial dependence in the peninsula data. While 
for the data of East Malaysia, semivariogram model 
such as Exponential, Gaussian, Linear, Power, 
Quadratic, Rational Quadratic and Wave are found 
to a have relatively small value of MSE. Based on 
the subjective assessment after making a 
comparison for each fitted model with the 
theoretical semivariogram shape, linear model has 
been chosen as the best semivariogram model for 
the theoretical mean of wind speed in Peninsular 
Malaysia. Figure 1 shows a fitted linear 
semivariogram with estimated nugget and scale 
effect of 0.752 and 0.688 respectively, implying that 
the peninsula data is random. Figure 1 also shows 
that the linear semivariogram cannot adequately fit 
the data. This implies that there is a lack of spatial 
dependence of wind speed in Peninsular Malaysia 
region. The presence of nugget effect for fitted 
linear semivariogram indicates the roughness of a 
data. Based on the properties of semivariogram 
discussed here, we can conclude that there is no 
clear pattern on how the wind speed at a particular 
location is influenced by the wind speed at a 
neighbouring location. However, we suggest that a 
more comprehensive analysis involving more 
stations need to be conducted in the future in order 
to get a better understanding about semivariogram 
of the data as well as the spatial dependence of wind 
speed in Peninsular Malaysia. Thus, instead of using 
kriging interpolator, inverse distance weighting 
method is used to avoid the problem of over or 
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underestimation. The result found based on the 
analysis for data of Sabah and Sarawak is slightly 
different from those found for the peninsular. As 
shown in Figure 2, it is found that the fitted power 
semivariogram with estimated scale and power of 

0.662 and 0.272 respectively has been chosen as the 
best model for describing the spatial dependence in 
the data. The absence of nugget effect indicates that 
the wind speed data is smooth. 

 
Table 4. List of geographical coordinate and theoretical mean for each station 

 
St Latitude Longitude Z(si)  St 

 
Latitude 

 
Longitude 

 
   Z(si) 

1 N01° 28.225 E103° 53.637 5.872  31 N05° 18.455 E103° 07.213 5.230 
2 N04° 16.260 E103° 25.826 4.854  32 N01° 27.308 E110° 29.498 3.769 
3 N05° 23.470 E100° 23.213 6.765  33 N01° 14.425 E111° 27.629 3.359 
4 N01° 33.734 E110° 23.329 5.301  34 N05° 21.528 E100° 17.864 4.815 
5 N03° 15.702 E101° 39.103 3.247  35 N04° 15.016 E117° 56.166 5.649 
6 N02° 15.510 E102° 10.364 5.056  36 N06° 08.218 E100° 20.880 5.972 
7 N03° 58.238 E102° 20.863 3.547  37 N04° 12.038 E100° 39.841 4.909 
8 N04° 37.781 E101° 06.964 7.028  38 N05° 19.980 E115° 14.315 5.421 
9 N05° 23.890 E100° 24.194 5.505  39 N02° 12.789 E102° 14.055 6.171 

10 N02° 49.246 E101° 48.877 6.456  40 N02° 03.715 E102° 35.587 5.919 
11 N03° 00.620 E101° 24.484 5.162  41 N03° 41.267 E101° 31.466 4.630 
12 N03° 49.138 E103° 17.817 6.333  42 N04° 33.155 E101° 04.856 5.667 
13 N03° 57.726 E103° 22.955 7.807  43 N02° 43.418 E101° 58 .105 5.439 
14 N03° 06.612 E101° 42.274 3.817  44 N03° 19.592 E101° 15.532 6.331 
15 N05° 37.886 E100° 28.189 5.212  45 N05° 20.313 E116° 09.769 4.648 
16 N01° 29.815 E103° 43.617 3.475  46 N05° 51.865 E118° 05.479 6.781 
17 N04° 53.940 E100° 40.782 4.694  47 N01° 29.068 E103° 41.064 4.936 
18 N06° 09.520 E102° 17.262 5.262  48 N02° 55.915 E101° 40.909 4.921 
19 N06° 09.520 E102° 15.059 5.463  49 N03° 06.376 E 101° 43.072 4.073 
20 N02° 59.645 E101° 44.417 3.690  50 N02° 00.875 E112° 55.640 3.590 
21 N04° 35.880 E103° 26.096 5.295  51 N02o 27.000 E103o 103.00 10.235 
22 N03° 06.287 E101° 33.368 5.461  52 N06o 10.000 E102o 17.000 8.727 
23 N02° 18.856 E111° 49.906 4.507  53 N04o 28.000 E101o 22.000 6.297 
24 N03° 10.587 E113° 02.433 4.985  54 N03o 47.000 E103o 13.000 5.434 
25 N04° 25.456 E114° 00.731 6.168  55 N05o 23.000 E103o 06.000 6.796 
26 N02° 07.992 E111° 31.351 4.647  56 N06o 29.000 E100o 16.000 4.377 
27 N05° 53.623 E116° 02.596 5.617  57 N06o 12.000 E100o 24.000 5.780 

28 N04° 45.529 E115° 00.813 4.212  58 N04o 34.000 E101o 06.000 6.212 

29 N06° 19.903 E099° 51.517 5.464  59 N05o 18.000 E100o 16.000 6.992 
30 N06° 25.424 E100° 11.046 7.272  60 N02o 16.000 E102o 15.000 7.589 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

  

 

 

 

 

Fig 1. The fitted linear semivariogram model for mean    
wind speed in Peninsular Malaysia 

 

Fig 2. The fitted power semivariogram model for mean 
wind speed in East Malaysia. 
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The information about the semivariogram model 
discussed above can be used for kriging 
interpolation. Once the properties of spatial 
dependence of the data have been determined, it is 
possible to perform the spatial prediction in the 
random field. Table 4 shows a list of geographical 
coordinate and theoretical mean of the wind speed 
for each station, while Figure 3 shows the result of 
spatial prediction for the theoretical mean wind 
speed, where the solid line represents the boundary 
for region with wind speed greater than 6 km/hour 
while dotted line indicate the boundary of regions 
with wind speed less than 6 km/hour. Most regions 
in East Malaysia have the wind speed in the range of 
4.3 to 6.3 km/hour. However, northeast and 
southwest region of Sarawak state was found to 
have the highest wind speed as compared to the 
other regions. The average wind speed for the 
southern region is about 6 km/hour. This indicates 
that the northeast and southwest region of Sarawak 
has the highest potential of producing energy. 
Assessment on wind potential for Peninsular 
Malaysia also follows the same rule. Figure 4 shows 
a rough map of spatial distribution for the 
theoretical mean in Peninsular Malaysia. The map 
shows that the mean wind speed across the 
peninsula is found to be in range between 3 to 10 
km/hour.  As shown in Figure 4, we found that the 
wind speed for southeast, northeast and northwest 
regions in the peninsula is greater when compared to 
all the other regions. Based on the results discussed 
above, northeast, northwest and southeast region in 
Peninsular Malaysia will be chosen as the region 
that could be explored in details in order to find a 

specific area that has a good wind regime and a 
large tendency to develop wind energy. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8 Conclusion 
Gamma distribution is the distribution that most 
frequently found adequate to describe the 
distribution of wind speed at 50 stations considered 
in this study. In order to gain some insight about the 
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Fig 3. Map of wind speed in East Malaysia 
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Fig 4. Map of mean wind speed in Peninsular 
Malaysia 
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potential of wind power in Malaysia, the theoretical 
mean is considered as an important index that have 
been derived from each selected statistical 
distribution. The mean wind speed is used to 
evaluate the potential of wind energy based on 
kriging and inverse distance weighting method in 
order to get the rough information about the areas 
with a good wind regime and have a capability to 
generated sustainable wind power. The mappings of 
the theoretical mean of wind speed over the 
Peninsular Malaysia indicates that region in the 
northeast, northwest and southeast are found to be 
the most potential to be explored in detail for the 
purpose of generating wind energy. While for East 
Malaysia, northeast and southwest region of 
Sarawak is found as the best region to be 
investigated in the future for developing wind 
energy. A more comprehensive analysis need to be 
conducted in the future, involving more stations to 
get a better map of wind speed in Malaysia.  
 
Appendix: 
 

Table A1. List of Semivariogram models 

Model Variogram 
Exponential 

( ) ( )( )2 2 1 exp 0

0

h if h
h

otherwise

τ σ
γ

 + − − >= 


 

Gaussian 
( ) ( )( )2 2 21 exp 0

0

h if h
h

otherwise

τ σ
γ

 + − − >= 


 

Linear 
( )

2 2 0
0

h if h
h

otherwise
τ σ

γ
 + >

= 


 

Logarithmic 
( ) ( )2 2 log 0

0
e h if h

h
otherwise

τ σ
γ

 + >   = 


 

Pentaspherical 
( ) ( )2 2 3 51.87 1.25 0.375 0

0

h h h if h
h

otherwise

τ σ
γ

 + − + >= 


 

Power 
( )

2 2 0

0

nh if h
h

otherwise

τ σ
γ

  + >  = 


 

where 0< n< 2  
Quadratic 

( ) ( )2 2 2

2

2 1

1

h h if h
h

if h

τ σ
γ

σ

 + − <= 
≥

 

Rational 
Quadratic ( )

2
2 2

2 0
1

0

h if h
h h

otherwise

τ σ
γ

  
+ >  = +  




 

 

 
Spherical 

( )
2 2 3

2

1.5 0.5 1

1

h h if h
h

if h

τ σ
γ

σ

  + − <  = 
≥

 

Wave 

( )
( )2 2 sin

1 0

0

h
if h

h h
otherwise

τ σ
γ

  
+ − >  =   
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